
AWS Workspaces:

Comprehensive Architectural Framework and Implementation Best Practices

Executive Summary

AWS WorkSpaces is a mature, fully managed Desktop-as-a-Service (DaaS) solution that provisions secure, cloud-based Windows, Linux, Ubuntu, or Amazon Linux virtual desktops with pay-as-you-go or monthly billing.

Best-practice implementations begin with accurate workload assessment: select persistent WorkSpaces for knowledge workers or non-persistent WorkSpaces Pools for shift-based and temporary users to optimize costs.

Use GPU-enabled bundles (graphics.g4dn, graphics-pro.g5) for design and engineering tasks, enable BYOL when holding eligible Windows licenses, and choose DCV protocol for superior graphics performance and lower latency. Integrate identity via AWS Managed Microsoft AD, AD Connector, or SAML 2.0 providers (Okta, Azure AD) with MFA enforced. Deploy WorkSpaces inside private VPC subnets, protect data with KMS encryption, and enable CloudTrail and WSP session recording for compliance.

Leverage Multi-Region Resilience, automate provisioning with Terraform/CloudFormation, and offer endpoint flexibility through Web Access or WorkSpaces Thin Clients. This approach delivers scalable, secure, and cost-efficient virtual desktops tailored to hybrid workforces.

1. Executive Summary and Strategic Alignment.....	4
2. Foundational Network Architecture and Virtual Private Cloud (VPC) Design.....	4
2.1 VPC Segmentation and Isolation Strategies.....	5
Traffic Flow Analysis:.....	5
2.2 Subnet Sizing and CIDR Block Planning.....	5
2.3 Availability Zone (AZ) Distribution and Resilience.....	8
2.4 Egress Traffic and Internet Access Strategies.....	8
3. Directory Services and Identity Management Architecture.....	9
3.1 Directory Service Options and Selection Framework.....	9
1. AD Connector (Proxy Architecture):.....	9
3.2 Deployment Scenarios and Trust Relationships.....	10
3.3 Multi-Factor Authentication (MFA) Implementation.....	11
3.4 Organizational Units (OUs) and Group Policy Governance.....	11
4. Protocol Architecture: PCoIP vs. DCV (Amazon WSP).....	12
4.1 Protocol Comparison and Selection Strategy.....	12
4.2 Network Performance Thresholds.....	13
5. Security and Compliance Architecture.....	14
5.1 Encryption Strategy.....	14
5.2 Security Groups and Firewall Layering.....	14
5.3 IP Access Control Groups.....	15
5.4 Endpoint Security: Trusted Devices and Certificates.....	15
6. Image Management and Application Delivery Strategy.....	15
6.1 Golden Image Lifecycle.....	16
6.2 Patching and Maintenance Windows.....	16
6.3 Application Layering.....	17
7. User Profile Management and Persistence (UEM).....	17
7.1 The Limitation of Native Profiles.....	17
7.2 FSLogix and Amazon FSx: The Enterprise Standard.....	18
8. Operational Monitoring, Diagnostics, and Troubleshooting.....	18
8.1 CloudWatch Metrics and Alarms.....	18
8.2 Troubleshooting "Unhealthy" WorkSpaces.....	19
8.3 Diagnostic Logging.....	20
9. Financial Operations and Cost Optimization.....	20
9.1 Hourly vs. Monthly: The Break-Even Point.....	20
9.2 The Cost Optimizer Solution.....	20

9.3 Zero-Connection Policies.....	21
10. Strategic Outlook and Final Recommendations.....	21
Appendix: Technical Reference Tables.....	22
A.1 Protocol Port Requirements.....	22
A.2 Client Feature Matrix (2025 Focus).....	23

1. Executive Summary and Strategic Alignment

The modernization of End User Computing (EUC) has transitioned from a tactical IT necessity to a strategic enabler of business continuity, global talent acquisition, and data security.

Amazon WorkSpaces, as a mature Desktop-as-a-Service (DaaS) solution, offers organizations the ability to decouple the desktop environment from the physical endpoint, shifting the execution of corporate workloads to a secure, managed cloud environment.

However, the apparent simplicity of the WorkSpaces console belies the complexity required to deploy the service at an enterprise scale. A successful implementation is not merely a matter of provisioning instances; it requires a rigorous architectural approach that integrates networking, identity management, security, and operational lifecycle management into a cohesive ecosystem.

This report provides an exhaustive analysis of the best practices for deploying Amazon WorkSpaces. It synthesizes technical documentation, expert insights, and architectural patterns to guide engineers and architects through the intricacies of VPC design, protocol selection, directory integration, and cost optimization.

The analysis highlights that the most resilient WorkSpaces environments are those that treat the virtual desktop not as a standalone server, but as an extension of the corporate network, governed by the same strictures of security and the same demands for performance as critical backend infrastructure.

2. Foundational Network Architecture and Virtual Private Cloud (VPC) Design

The structural integrity of an Amazon WorkSpaces deployment is deterministically set by the underlying network architecture. Unlike standard EC2 instances, WorkSpaces have specific elastic network interface (ENI) requirements and directory service

dependencies that dictate subnet sizing, placement, and routing.

2.1 VPC Segmentation and Isolation Strategies

It is a recommended best practice to deploy Amazon WorkSpaces in a dedicated Virtual Private Cloud (VPC), separate from application workloads and other production resources. This isolation strategy establishes a distinct security boundary, allowing administrators to apply granular governance, Network Access Control Lists (NACLs), and routing policies specific to user traffic without risking disruption to backend services.

For enterprise-scale deployments, a dedicated "EUC VPC" is typically peered with a "Shared Services VPC" or connected via AWS Transit Gateway to a broader hub-and-spoke network topology. This architecture allows WorkSpaces to access necessary resources—such as intranet sites, file servers, and licensing servers—while maintaining strict traffic separation. The separation also simplifies the audit scope, as the desktop environment, which is inherently more exposed to user behavior, is compartmentalized from the data center logic.

Traffic Flow Analysis:

WorkSpaces traffic is architecturally bifurcated into two distinct streams, handled by two separate network interfaces on each WorkSpace instance:

1. **Management Interface (eth0):** This interface is managed by AWS and is used for the streaming connection (PCoIP or DCV traffic) between the WorkSpaces client and the WorkSpace. It connects to the secure AWS management network.
2. **Primary Interface (eth1):** This interface is connected to the customer-managed VPC. It handles all user-generated network activity, such as internet browsing, file server access, and printing.

Understanding this bifurcation is critical for troubleshooting; connection failures often stem from blockages on the management interface, while application failures usually relate to the primary interface.

2.2 Subnet Sizing and CIDR Block Planning

One of the most critical, immutable decisions in WorkSpaces design is CIDR (Classless Inter-Domain Routing) block planning. Subnet sizes cannot be modified after creation, making initial capacity planning vital to the longevity of the deployment. WorkSpaces

implementations require at least two private subnets in different Availability Zones (AZs) to support the high-availability requirements of the AWS Directory Service.

The Constraints of Directory Services

The Directory Service construct—whether it is an AD Connector or AWS Managed Microsoft AD—dictates where WorkSpaces can be launched. All WorkSpaces associated with a specific directory must reside in the subnets assigned to that directory at creation time. This coupling means that if the subnets assigned to the directory run out of IP addresses, no new WorkSpaces can be provisioned until a new directory construct is created, which is a significant architectural disruption.

Calculating IP Consumption

Capacity planning must account for more than just the number of concurrent users.

- **Per-WorkSpace Consumption:** Each WorkSpace consumes one IP address from the VPC subnet via its primary ENI (eth1).
- **AWS Reservations:** In every AWS subnet, the first four IP addresses and the last one are reserved (Network address, VPC router, DNS, Future use, and Broadcast). This removes five usable IPs per subnet immediately.
- **Directory Controllers:** The directory service itself consumes IP addresses for its domain controllers in each subnet (typically two IPs per directory, one per subnet).
- **Rolling Updates and Rebuilds:** During maintenance events or rebuilds, WorkSpaces may temporarily require additional IP addresses as new instances are spun up before old ones are terminated.
- **Management Infrastructure:** If secondary services like MFA RADIUS proxies or patch management relays are deployed in the same subnets, they further deplete the pool.

Sizing Recommendation:

A common architectural pitfall is sizing subnets based strictly on current user counts. A standard /24 subnet provides only 251 usable IP addresses. For enterprise deployments, this is often insufficient. It is strongly recommended to use at least a /22 (1,019 usable IPs) or /20 (4,091 usable IPs) per subnet. This affords ample headroom for growth without requiring complex multi-VPC architectures or directory migrations.

Table 1: Recommended Subnet Sizing for WorkSpaces Deployments

Organization Profile	Recommended CIDR Mask	Usable IPs per Subnet	Architectural Rationale
Small (< 200 Users)	/23	507	Allows for 100% growth overhead without requiring network re-architecture.
Medium (200 - 800 Users)	/22	1,019	Balances address conservation with sufficient overhead for fleet expansion and rolling updates.
Large (> 1,000 Users)	/20	4,091	Essential for large pools; minimizes the administrative burden of managing multiple directory constructs.
Enterprise (> 5,000)	/19 or Multiple VPCs	8,187+	Prevents broadcast domain issues and aligns with multi-region or multi-account strategies; usually coupled with multiple directories.

2.3 Availability Zone (AZ) Distribution and Resilience

To ensure high availability and disaster resilience, the VPC design must span at least two Availability Zones. The AWS Directory Service requires a pair of subnets across two AZs to function. If a specific AZ experiences an outage, new WorkSpaces can be provisioned in the secondary AZ, provided the subnets are sized correctly to handle the failover load.

Architectural Warning: Not all Availability Zones support Amazon WorkSpaces. Before finalizing the VPC design, architects must verify which AZs in the target region support the service. Deploying subnets in unsupported AZs will result in launch failures and require manual remediation of the directory configuration.

2.4 Egress Traffic and Internet Access Strategies

WorkSpaces typically require internet access for operating system updates, browser-based workflows, and connectivity to SaaS platforms like Office 365. Security best practices dictate that WorkSpaces should never reside in public subnets with direct internet ingress.

- **NAT Gateway Implementation:** WorkSpaces should be deployed in private subnets, with default routes pointing to NAT Gateways located in public subnets. This architecture ensures that while WorkSpaces can initiate outbound connections, they are shielded from unsolicited inbound traffic from the public internet.
- **Split-Tunneling vs. Full-Tunneling:** For organizations using VPNs or Direct Connect to link the VPC to on-premises networks, routing decisions have significant performance implications. Using split-tunneling—where internet traffic exits locally via the VPC NAT Gateway while corporate traffic traverses the VPN—is recommended to reduce latency and bandwidth costs on the corporate WAN. Backhauling internet traffic over Direct Connect to on-premises firewalls is a valid security pattern but often introduces "hairpinning" latency that degrades the user experience.

3. Directory Services and Identity Management Architecture

Amazon WorkSpaces relies fundamentally on directory services for user authentication, WorkSpace assignment, and policy application. The choice of directory service is not merely a configuration detail; it dictates the operational model, the availability profile of the solution, and the integration with existing on-premises infrastructure.

3.1 Directory Service Options and Selection Framework

AWS provides three primary directory constructs for WorkSpaces, each serving distinct architectural needs. Selecting the correct directory is a foundational decision that is difficult to reverse without migration.

1. AD Connector (Proxy Architecture)

The AD Connector serves as a directory gateway, proxying authentication requests to an on-premises Microsoft Active Directory.

- **Architecture:** No user credentials or password hashes are cached in the AWS cloud. It relies entirely on the on-premises AD for authentication and user lookups.
- **Best Use Case:** Organizations requiring strict centralized credential management where security policies dictate that user identities must strictly remain on-premises. It is also cost-effective for smaller deployments.
- **Critical Constraint:** The availability of the WorkSpaces solution becomes strictly coupled to the network link (VPN or Direct Connect). If the link fails, the AD Connector cannot reach the on-premises domain controllers, and users cannot log in. It requires a 1-to-1 relationship with the on-premises domain.

2. AWS Managed Microsoft AD (Resource Forest Architecture)

This is a fully managed Microsoft Active Directory running on Windows Server instances within AWS. It enables trust relationships (one-way or two-way) with on-premises AD.

- **Architecture:** It functions as a "Resource Forest" in the cloud. Users exist in the on-premises "Account Forest," and a trust allows them to log into resources in the AWS forest.

- **Best Use Case:** Enterprise environments requiring high availability, complex trust scenarios (e.g., mergers and acquisitions), or applications that need directory schema extensions in the cloud.
- **Strategic Advantage:** It isolates the cloud workload from on-premises WAN failures. Because the Managed AD handles the immediate authentication interaction (via the trust), cached credentials can potentially allow logins even if the trust link is temporarily degraded, offering a higher availability profile than the AD Connector.

3. Simple AD (Standalone Architecture)

Simple AD is a Samba 4-based directory compatible with Active Directory.

- **Architecture:** A standalone directory with no connection to on-premises networks.
- **Best Use Case:** Isolated test environments, small operational detachments, or cloud-native startups where no legacy on-premises AD exists.
- **Limitations:** It does not support trust relationships, MFA via AD Connector, or advanced AD features like the Recycle Bin or schema extensions. It is generally not recommended for enterprise-grade WorkSpaces deployments.

Decision Matrix Insight: For robust enterprise deployments, **AWS Managed Microsoft AD** is generally preferred over AD Connector. While AD Connector is cost-effective, the operational risk of WAN dependency often outweighs the savings. The Resource Forest model provided by Managed AD aligns better with the principle of loose coupling in cloud architecture.

3.2 Deployment Scenarios and Trust Relationships

The integration of AWS Managed Microsoft AD allows for flexible deployment scenarios regarding Active Directory trusts:

- **Scenario 4 (Two-way Transitive Trust):** Users from the on-premises domain can access AWS resources, and AWS resources can potentially access on-premises resources. This provides the most seamless experience for user migration and resource sharing.
- **Scenario 6 (One-way Trust):** The AWS Managed AD trusts the on-premises AD, but not vice-versa. This is a highly secure pattern often used by organizations to

prevent a compromise in the cloud environment from propagating back to the on-premises identity store. WorkSpaces users can log in with corporate credentials, but the cloud environment has no permissions in the corporate domain.

3.3 Multi-Factor Authentication (MFA) Implementation

Security standards in most regulated industries mandate MFA for external remote access. WorkSpaces supports RADIUS integration to provide this second layer of security.

- **Integration Mechanism:** Whether using AD Connector or Managed AD, a RADIUS server (e.g., RSA SecurID, Duo, Microsoft NPS) must be configured. The WorkSpaces client authentication flow first prompts for the username and password (First Factor), validates them against AD, and then prompts for the OTP (Second Factor), which is validated against the RADIUS server.
- **Architectural Best Practice:** Ensure the RADIUS server resides in a high-availability configuration. If using AD Connector, the RADIUS server typically resides on-premises. To prevent authentication timeouts due to latency, placing a RADIUS proxy or replica in the AWS VPC is recommended. The timeout values for the RADIUS client in AWS Directory Service should be tuned to accommodate network round-trips.

3.4 Organizational Units (OUs) and Group Policy Governance

WorkSpaces should be treated as distinct assets within Active Directory, placed in dedicated Organizational Units (OUs). This allows administrators to apply granular Group Policy Objects (GPOs) specifically tailored for the virtual environment.

- **Policy Tuning:** Standard laptop GPOs often include power management settings (sleep/hibernate) or screensaver locks that can disrupt WorkSpaces connectivity or user experience. These settings must be overridden or blocked in the WorkSpaces OU.
- **Loopback Processing:** Utilizing GPO loopback processing (Merge or Replace mode) is critical. Since users may log into both physical laptops and virtual WorkSpaces, loopback processing ensures that user-specific policies (like drive mappings or printer settings) are applied correctly based on the *computer* they

are logging into, preventing conflicts between physical and virtual environments.

4. Protocol Architecture: PCoIP vs. DCV (Amazon WSP)

The user experience in VDI is fundamentally defined by the display protocol—the language used to transmit pixels, audio, and inputs from the cloud to the endpoint. AWS originally utilized Teradici's PCoIP (PC-over-IP) but has shifted strategic focus to the Amazon DCV protocol (formerly known as WSP - WorkSpaces Streaming Protocol).

4.1 Protocol Comparison and Selection Strategy

The choice between PCoIP and DCV is binary at the time of WorkSpace creation. While APIs now exist to migrate protocols without data loss, selecting the correct protocol upfront is essential to avoid operational churn.

Table 2: Technical Comparison of WorkSpaces Protocols

Feature	PCoIP (PC-over-IP)	Amazon DCV (formerly WSP)	Architectural Insight
Transport Layer	UDP Only (Port 4172)	TCP & UDP (Port 4195, 443)	DCV's ability to fall back to TCP makes it more resilient on unreliable networks where UDP packet loss causes artifacting.
High Latency Tolerance	Low (<100ms recommended)	High (up to 250ms+ acceptable)	DCV uses advanced encoding algorithms that handle global distances and high latency significantly

			better than PCoIP.
Webcam Support	Limited (No video-in)	Full Bidirectional Video	DCV is mandatory for users requiring video conferencing applications like Zoom, Teams, or WebEx.
Smart Card (PIV/CAC)	Supported (Windows Client)	Supported (Windows/Linux)	DCV offers broader support for government/defense use cases across different OS clients.
Client Support	Broad (Zero Clients supported)	Narrower (No Zero Client support yet)	PCoIP remains the only option for environments heavily invested in legacy Teradici Zero Client hardware.

4.2 Network Performance Thresholds

Network stability is often the "silent killer" of VDI projects. The protocol dictates the required network quality, and monitoring these metrics is vital.

- **Latency Requirements:**
 - **PCoIP:** Optimal experience requires a Round Trip Time (RTT) of less than 100ms. If RTT exceeds 375ms, the client connection is forcibly terminated.
 - **DCV:** Maintains usability up to 250ms RTT. Performance degrades between 250ms and 400ms but remains functional, making it the preferred choice for cross-region access or users with poor internet connections.
- **Bandwidth Consumption:** A minimum of 1 Mbps per user is recommended for basic productivity. However, for video-heavy users on DCV, a minimum of 1.7

Mbps upload bandwidth is required to support webcam redirection.

- **Packet Loss Sensitivity:** PCoIP is highly sensitive to packet loss; even 0.1% loss can cause screen freezing or artifacting. DCV's adaptive algorithms handle packet loss more gracefully by adjusting compression dynamically and utilizing TCP retransmission where necessary.

Strategic Recommendation: New deployments should default to **Amazon DCV (WSP)** unless there is a specific hardware constraint (e.g., existing PCoIP Zero Clients). DCV provides superior Audio/Video performance, better handling of high-latency connections, and is the focus of AWS's future feature development.

5. Security and Compliance Architecture

WorkSpaces extends the corporate network perimeter to the end-user's device, often over the public internet. Therefore, the security architecture must address the transport layer, data at rest, and access control with a zero-trust mindset.

5.1 Encryption Strategy

- **Data at Rest:** It is a non-negotiable best practice to enable encryption for both the Root Volume (C:) and User Volume (D:) using AWS Key Management Service (KMS). Encryption must be enabled at the time of launch; it cannot be enabled on an existing unencrypted WorkSpace without a full rebuild. This ensures compliance with data protection standards (HIPAA, PCI, GDPR).
- **Data in Transit:** Both protocols encrypt the pixel stream. PCoIP uses AES-128/256, while DCV utilizes TLS 1.2/1.3 for TCP and DTLS for UDP, ensuring protection against eavesdropping on public networks. No additional VPN is required for the streaming traffic itself.

5.2 Security Groups and Firewall Layering

When a directory is registered, AWS creates two default security groups: one for the directory controllers and one for the WorkSpaces members.

- **Member Security Group:** This group controls traffic allowed *out of* the WorkSpace and *into* the WorkSpace from within the VPC.
- **Best Practice:** Do not modify the default directory security groups directly. Instead, create a custom "WorkSpaces Security Group" and apply it to the

directory. This ensures that all new WorkSpaces automatically inherit the correct rules.

- *Inbound Rules:* Should typically be restricted. Only allow RDP (3389) or SSH (22) from specific management subnets or bastion hosts for administration. Block direct peer-to-peer traffic between WorkSpaces to prevent lateral movement of malware.
- *Outbound Rules:* Restrict outbound traffic based on business needs (e.g., allow 443/80, block SMTP 25 to prevent spam).

5.3 IP Access Control Groups

To prevent users from accessing corporate WorkSpaces from unauthorized locations (e.g., personal devices at a coffee shop or unsecured public Wi-Fi), administrators should implement IP Access Control Groups. These groups act as a whitelist at the directory level, denying connection attempts from IP addresses not explicitly allowed. This is particularly effective for organizations with defined branch office IPs or VPN concentrators.

5.4 Endpoint Security: Trusted Devices and Certificates

A major risk in VDI is the security posture of the client device connecting to the cloud.

- **Trusted Devices:** Certificate-based authentication allows administrators to restrict access to specific client devices. By deploying a client certificate to corporate-managed laptops and configuring the WorkSpaces directory to require it, organizations ensure that only managed assets can initiate a session. This prevents users from accessing sensitive data from unmanaged, potentially infected personal devices.
- **Local Admin Rights:** By default, users may be granted local administrator rights. For strict security environments, this setting should be disabled in the WorkSpaces directory configuration. Removing local admin rights prevents users from installing unauthorized software, altering system settings, or inadvertently introducing malware.

6. Image Management and Application

Delivery Strategy

Managing the lifecycle of the desktop operating system and applications is the most operational-heavy aspect of WorkSpaces. A disjointed image strategy leads to "image sprawl" and administrative overhead.

6.1 Golden Image Lifecycle

Creating a custom image (Golden Image) is essential for standardizing the environment.

- **Creation Process:** The workflow involves launching a base WorkSpace, installing core applications (Anti-Virus, VPN clients, productivity tools), configuring OS settings, and then capturing the image.
- **Optimization:** Before imaging, it is critical to perform cleanup operations—deleting temporary files, clearing event logs, and removing hardware-specific drivers. Crucially, the image source WorkSpace should not be domain-joined during the customization phase if possible, or usually, the imaging process (Sysprep) handles the generalization.
- **Updates:** WorkSpaces does not support "live" image updates for Personal instances in the same way non-persistent VDI might. To update an image, the administrator must launch a WorkSpace from the current image, apply patches, create a new image version, and then "Rebuild" end-user WorkSpaces.
- **Rebuild vs. Restore:** It is vital to understand the difference. A "Rebuild" replaces the Root volume (C:) with the new image but preserves the User volume (D:). A "Restore" rolls back both volumes to the last healthy snapshot, used primarily for disaster recovery, not updates.

6.2 Patching and Maintenance Windows

Patching strategies differ significantly based on the running mode of the WorkSpace:

- **AlwaysOn WorkSpaces:** These instances function like traditional persistent servers. They can be patched via standard enterprise tools like Microsoft SCCM, WSUS, or AWS Systems Manager (SSM) Patch Manager. The default maintenance window is set for Sunday mornings (00:00-04:00), but this can be controlled via Group Policy.
- **AutoStop WorkSpaces:** These instances hibernate when not in use. This presents a challenge for traditional patch management tools, which cannot patch a machine that is offline.

- **AWS Native Maintenance:** AWS wakes up AutoStop WorkSpaces automatically once a month (starting the 3rd Monday) to apply OS patches.
- **Best Practice:** For more frequent or controlled patching, use **AWS Systems Manager Maintenance Windows**. An automation runbook can be configured to wake up AutoStop WorkSpaces, apply patches via SSM Patch Manager, and then stop them again. This ensures compliance without relying solely on the default monthly window or user behavior.

6.3 Application Layering

To prevent image bloat, organizations should avoid baking every application into the Golden Image. Instead, adopt an application layering strategy.

- **Amazon WorkSpaces Applications (formerly AppStream 2.0):** This service can be used to stream specific, high-maintenance, or legacy applications to the WorkSpace browser or client. This keeps the base WorkSpace image lightweight and secure.
- **Liquidware FlexApp:** A partner solution often used in WorkSpaces environments. FlexApp attaches applications at login as virtual disks. To the OS and user, the app looks natively installed, but it is actually injected dynamically. This allows a single OS image to serve multiple departments (HR, Finance, Engineering) by simply varying the application layers assigned to the user.

7. User Profile Management and Persistence (UEM)

In a VDI environment, the user's persona (files, settings, browser history) must persist across sessions and, ideally, across different WorkSpaces (e.g., during a disaster recovery failover).

7.1 The Limitation of Native Profiles

Native Windows roaming profiles are notoriously prone to corruption and index bloat. While WorkSpaces Personal provides a persistent D: drive, the user's profile (C:\Users\%username%) resides on the C: drive. If a WorkSpace is rebuilt (to apply a

new Golden Image), the C: drive is wiped, and the profile is lost unless specific redirection to the D: drive is configured.

7.2 FSLogix and Amazon FSx: The Enterprise Standard

The industry-standard best practice for profile management on AWS is **Microsoft FSLogix** backed by **Amazon FSx for Windows File Server**.

- **Architecture:** FSLogix encapsulates the entire user profile into a VHD or VHDX virtual disk container stored on a network share. When the user logs in, this VHD is mounted to the WorkSpace. The OS sees the profile as local, but it is physically running over the network.
- **Benefits:**
 - *Performance:* Logins are extremely fast because the profile does not need to be copied down to the local machine; it is just mounted.
 - *Persistence:* Since the profile lives on the file server (FSx), it survives WorkSpace rebuilds perfectly.
 - *Office 365 Containers:* FSLogix specifically handles Outlook caches (.OST files) and OneDrive caches efficiently, which are traditionally problematic in VDI.
- **Implementation Details:**
 - Deploy Amazon FSx for Windows File Server in a Multi-AZ configuration for high availability.
 - Configure GPOs to point the FSLogix agent to the FSx SMB share.
 - *Cloud Cache:* For multi-region resilience, FSLogix "Cloud Cache" can be configured to write the profile to two different storage locations (e.g., FSx in Region A and FSx in Region B) simultaneously. This enables an active/active or active/passive profile availability across regions.

8. Operational Monitoring, Diagnostics, and Troubleshooting

Operational visibility is crucial for diagnosing "slow" sessions, connectivity failures, and "unhealthy" states.

8.1 CloudWatch Metrics and Alarms

Administrators should not wait for user tickets to detect issues. Amazon CloudWatch provides specific metrics that should be monitored:

- **UserConnected**: Tracks concurrency and usage adoption trends.
- **Available vs. Unhealthy**: A spike in **Unhealthy** hosts indicates widespread issues (e.g., directory connectivity failure, patch failure, or network subnet exhaustion).
- **InSessionLatency**: This is the most critical metric for user experience. Latency consistently exceeding 200ms usually triggers helpdesk tickets.
- **UDP Packet Loss Rate**: High packet loss on PCoIP connections indicates network instability (ISP issues or Wi-Fi interference) and correlates directly with "blurry screen" complaints.

8.2 Troubleshooting "Unhealthy" WorkSpaces

The "Unhealthy" status is the most common operational issue reported by administrators. It signifies that the **SkylightWorkSpacesConfigService** (the agent running inside the WorkSpace) cannot communicate with the AWS control plane.

Root Cause Analysis:

1. **High CPU/Memory**: The Skylight service is starved of resources and fails to send the heartbeat.
2. **Hostname Change**: If a user or script renames the computer object inside Windows, the trust relationship with the directory breaks, and the heartbeat fails.
3. **Network Blocking**: Antivirus or Host Firewalls may be blocking the Management Interface (eth0) or the required ports (4172/4195).
4. **Service Failure**: The Skylight service itself may have crashed.

Remediation Workflow:

1. Reboot the WorkSpace from the console (resolves transient resource issues).
2. If unreachable, verify via the EC2 console that the instance status checks are passing.
3. Check firewall rules to ensure the Management Interface (eth0) is not blocked.
4. If the WorkSpace is accessible via RDP/SSH, restart the **SkylightWorkSpacesConfigService**.
5. As a last resort, perform a "Restore" to roll back the volume, or a "Rebuild" to

re-image.

8.3 Diagnostic Logging

For deep dives into client-side issues, AWS offers **Diagnostic Log Uploads**.

Administrators can enable this feature at the directory level. It allows the WorkSpaces client application (Windows/Mac/Linux) to upload logs directly to S3/CloudWatch. This is invaluable for troubleshooting complex connectivity issues like "SessionDisconnect" errors or certificate validation failures without needing to remotely access the user's physical laptop.

9. Financial Operations and Cost Optimization

WorkSpaces offers a flexible billing model, but unmonitored deployments can lead to significant waste.

9.1 Hourly vs. Monthly: The Break-Even Point

- **AutoStop (Hourly):** Best for part-time workers, contractors, or disaster recovery. Users pay a small fixed monthly fee plus an hourly rate for usage.
- **AlwaysOn (Monthly):** Best for full-time employees. Flat rate for unlimited usage.
- **The Optimization Math:** There is a specific break-even point—typically around **80-85 hours per month**, depending on the bundle type (Value, Standard, Performance). If a user logs more than ~82 hours, Monthly billing is cheaper. If less, Hourly is cheaper.

9.2 The Cost Optimizer Solution

AWS provides a ready-made solution called "Cost Optimizer for Amazon WorkSpaces." This is a CloudFormation template that deploys a Lambda function and CloudWatch triggers.

- **Functionality:** The solution analyzes usage patterns daily. If an AutoStop WorkSpace consistently exceeds the break-even threshold, the solution automatically converts it to AlwaysOn (and vice versa at the end of the month) to ensure the lowest possible bill.

- **Impact:** Implementing this automation is a high-priority best practice, often saving organizations 20-30% on their WorkSpaces bill without requiring manual analysis.

9.3 Zero-Connection Policies

Unused WorkSpaces continue to incur monthly fees (storage and base infrastructure) even if not used. Administrators should implement lifecycle policies to identify WorkSpaces with "Zero Connections" over a 30-60 day period. These should be targeted for termination (after backing up user data to S3) to eliminate "zombie" costs.

10. Strategic Outlook and Final Recommendations

Implementing Amazon WorkSpaces at scale is a transformative initiative that requires a shift in mindset from traditional desktop management to cloud-native infrastructure orchestration. The "best practice" is not a single configuration setting but a layered architectural approach:

1. **Network First:** Design robust VPCs with ample address space (/20 or larger) to prevent scaling dead-ends.
2. **Identity Resilience:** Decouple authentication from WAN availability using AWS Managed Microsoft AD rather than relying on brittle Connectors.
3. **Protocol Future-Proofing:** Standardization on **Amazon DCV (WSP)** provides the best balance of performance, features, and resilience against network instability.
4. **Data Decoupling:** Moving user profiles and data off the desktop and onto **Amazon FSx via FSLogix** ensures that the desktop compute becomes truly fungible and recoverable.
5. **Automated Economics:** Leveraging the **Cost Optimizer** ensures that the dynamic nature of the cloud translates into actual financial savings.

By adhering to these architectural pillars, organizations can deploy a WorkSpaces environment that is secure, compliant, cost-effective, and capable of delivering a high-fidelity user experience globally.

Appendix: Technical Reference Tables

A.1 Protocol Port Requirements

Protocol	Port	Type	Direction	Purpose
PCoIP	4172	UDP/TCP	Inbound/Outbound	Streaming media and control channel.
DCV (WSP)	4195	TCP/UDP	Inbound/Outbound	Streaming media (Legacy WSP).
DCV (WSP)	443	TCP/UDP	Inbound/Outbound	Streaming media (Modern DCV).
Management	443	TCP	Outbound	HTTPS access to AWS APIs and S3.
Directory	53	TCP/UDP	Outbound	DNS resolution to Domain Controllers.
Directory	88,	TCP/UDP	Outbound	Kerberos and LDAP

	389			authentication.
--	-----	--	--	-----------------

A.2 Client Feature Matrix (2025 Focus)

Feature	Windows Client	macOS Client	Linux Client	Web Access
Multi-Monitor	Yes (Up to 4)	Yes (Up to 4)	Yes (Up to 4)	No (Single only)
Webcam Redirection	Yes (DCV)	Yes (DCV)	No	Limited
USB Redirection	Yes	Limited	No	No
High DPI Support	Yes	Yes	Yes	N/A
Diagnostic Logging	Yes	Yes	Yes	Yes